The Model Matrix

Lecture 8

Robb T. Koether
Hampden-Sydney College

Wed, Sep 11, 2019

Outline

(1) The Model Coordinate System
(2) The Model Matrix

- Translations
- Rotations
- Scalings
(3) Sequences of Transformations

4 Generating the Matrices
(5) Other Rotations and Scalings

6 Assignment

Outline

(1) The Model Coordinate System
(2) The Model Matrix

- Translations
- Rotations
- Scalings
(3) Sequences of Transformations
(4) Generating the Matrices
(5) Other Rotations and Scalings
- Assignment

The Model Coordinate System

- When we create an object, such as a square or a circle, we use the coordinate system and position that are most convenient.
- To create a square, we might place the lower-left corner at $(0,0)$ and let the side be 1.
- To create a circle, we would place the center at $(0,0)$ and let the radius be 1.
- That coordinate system is call the model coordinate system and it is specific to each object.

The Model Coordinate System

- For example, suppose that we want to draw four squares as shown.

The Model Coordinate System

- Should we construct 4 separate squares in four separate buffers?

The Model Coordinate System

- Should we construct 4 separate squares in four separate buffers?
- Or should we construct one square and draw it 4 times, in 4 different locations?

The Model Coordinate System

- Should we construct 4 separate squares in four separate buffers?
- Or should we construct one square and draw it 4 times, in 4 different locations?
- How do we change the location (in world coordinates) of an object?

Outline

(1) The Model Coordinate System
(2) The Model Matrix

- Translations
- Rotations
- Scalings
(3) Sequences of Transformations

4) Generating the Matrices
(3) Other Rotations and Scalings

6 Assignment

The Model Matrix

- The model matrix is a matrix that represents a geometric transformation that will move or modify (i.e., transform) an object from its model coordinates to world coordinates.
- The model matrix consists of any combination of
- Translations - slide in a given direction.
- Rotations - rotate about a given axis.
- Scalings - stretch or shrink by a given factor.
- Or any other transformation that can be represented by a matrix.

The Model Matrix

```
The Model Matrix
mat4 model = ... // Create the (global) 4 x 4 model matrix
GLuint model_loc = glGetUniformLocation(program, "model");
glUniformMatrix4fv(model_loc, 1, GL_FALSE, model);
```

- The model matrix, like the projection matrix, must be passed to the vertex shader.
- The vertex shader will apply it, along with the projection matrix, to the vertex.

The Vertex Shader

```
The Vertex Shader
#version 450 core
uniform mat4 model;
uniform mat4 proj;
out vec4 color;
layout (location = 0) in vec2 vPosition;
layout (location = 1) in vec3 vColor;
void main()
{
    gl_Position = proj*model*vec4(vPosition, 0.0f, 1.0f);
    color = vec4(vColor, 1.Of);
}
```


Outline

(1) The Model Coordinate System

(2) The Model Matrix

- Translations
- Rotations
- Scalings
(3) Sequences of Transformations

4 Generating the Matrices
(3) Other Rotations and Scalings

6 Assignment

Translations

```
Translations
mat4 translate(float dx, float dy, float dz);
```

- The translate () function will return a translation matrix.
- The x, y, and z coordinates will be shifted by the amounts dx, dy, and $d z$, respectively.
- See vmath.h for details.

Translations

Translation Matrix

$$
\mathbf{T}=\left(\begin{array}{cccc}
1 & 0 & 0 & d_{x} \\
0 & 1 & 0 & d_{y} \\
0 & 0 & 1 & d_{z} \\
0 & 0 & 0 & 1
\end{array}\right)
$$

- Translates $(x, y, z, 1)$ to $\left(x+d_{x}, y+d_{y}, z+d_{z}, 1\right)$.

Translations

Translation

$$
\left(\begin{array}{c}
x+d_{x} \\
y+d_{y} \\
z+d_{z} \\
1
\end{array}\right)=\left(\begin{array}{cccc}
1 & 0 & 0 & d_{x} \\
0 & 1 & 0 & d_{y} \\
0 & 0 & 1 & d_{z} \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right) .
$$

- Translates $(x, y, z, 1)$ to $\left(x+d_{x}, y+d_{y}, z+d_{z}, 1\right)$.

Outline

(1) The Model Coordinate System

(2) The Model Matrix

- Translations
- Rotations
- Scalings
(3) Sequences of Transformations
(4) Generating the Matrices
(5) Other Rotations and Scalings
- Assignment

Rotations

```
Rotations
mat4 rotate(float angle, float ax, float ay, float az);
```

- The rotate () function will return a rotation matrix.
- The object will be rotated through the given angle and about an axis through the origin and the given point (ax, ay, az).
- The direction of rotation is determined by the right-hand rule: point your right thumb in the direction from the origin to the point and curl your fingers.
- See vmath.h for details.

Rotations About the z-Axis

Rotation Matrix

$$
\mathbf{R}_{\mathbf{z}}=\left(\begin{array}{cccc}
\cos \theta & -\sin \theta & 0 & 0 \\
\sin \theta & \cos \theta & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

- Rotation about the z-axis.
- Rotates $(x, y, z, 1)$ to $(x \cos \theta-y \sin \theta, x \sin \theta+y \cos \theta, z, 1)$.

Rotations About the z-Axis

Rotation

$$
\left(\begin{array}{c}
x \cos \theta-y \sin \theta \\
x \sin \theta+y \cos \theta \\
z \\
1
\end{array}\right)=\left(\begin{array}{cccc}
\cos \theta & -\sin \theta & 0 & 0 \\
\sin \theta & \cos \theta & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right)
$$

- Rotation about the z-axis.
- Rotates $(x, y, z, 1)$ to $(x \cos \theta-y \sin \theta, x \sin \theta+y \cos \theta, z, 1)$.

Outline

(1) The Model Coordinate System

(2) The Model Matrix

- Translations
- Rotations
- Scalings
(3) Sequences of Transformations

4 Generating the Matrices
(3) Other Rotations and Scalings

6 Assignment

Scalings

Scalings

```
mat4 scale(float sx, float sy, float sz);
```

- The scale () function will return a scaling matrix.
- The object will be stretched or shrunk by factors sx, sy, and sz in the x, y, and z directions, respectively.
- If one of the values is -1 and the other two are 1 , then the scaling will be a reflection.
- None of sx, sy, and sz should ever be 0 .
- See vmath.h for details.

Scalings

Scaling Matrix

$$
\mathbf{S}=\left(\begin{array}{cccc}
s_{x} & 0 & 0 & 0 \\
0 & s_{y} & 0 & 0 \\
0 & 0 & s_{z} & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

- Scales $(x, y, z, 1)$ to $\left(s_{x} \cdot x, s_{y} \cdot y, s_{z} \cdot z, 1\right)$.

Scalings

Scaling Matrix

$$
\left(\begin{array}{c}
s_{x} \cdot x \\
s_{y} \cdot y \\
s_{z} \cdot z \\
1
\end{array}\right)=\left(\begin{array}{cccc}
s_{x} & 0 & 0 & 0 \\
0 & s_{y} & 0 & 0 \\
0 & 0 & s_{z} & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right)
$$

- Scales $(x, y, z, 1)$ to $\left(s_{x} \cdot x, s_{y} \cdot y, s_{z} \cdot z, 1\right)$.

Outline

(1) The Model Coordinate System
(2) The Model Matrix

- Translations
- Rotations
- Scalings
(3) Sequences of Transformations
(4) Generating the Matrices
(5) Other Rotations and Scalings
- Assignment

Sequences of Transformations

- In most cases, an object will go through a sequence of transformations.
- All sequences of transformations can be consolidated down to
- A scaling, followed by
- A rotation, followed by
- A translation.
- This is the most intuitive sequence.

Sequences of Transformations

- A translation followed by a rotation can be rewritten as a rotation followed by a translation.
- A translation followed by a scaling can be rewritten as a scaling followed by a translation.
- A rotation followed by a scaling can be rewritten as a scaling followed by a rotation.

Sequences of Transformations

- Furthermore, the product of two translations is again a translation.
- The product of two rotations is again a rotation.
- The product of two scalings is again a scaling.
- Thus, any sequence can be rewritten as one scaling, then one rotation, then one translation.

Outline

(1) The Model Coordinate System
(2) The Model Matrix

- Translations
- Rotations
- Scalings
(3) Sequences of Transformations

4) Generating the Matrices
(5) Other Rotations and Scalings

6 Assignment

Generating Transformation Matrices

Generating Transformation Matrices

```
mat4 translate(dx, dy, dz);
mat4 rotate(angle, ax, ay, az);
mat4 scale(sx, sy, sz);
```

- The vmath. h library has functions that will generate transformation matrices for translations, rotations, and scalings.
- Each matrix is returned in column-major order.

Outline

(1) The Model Coordinate System

(2) The Model Matrix

- Translations
- Rotations
- Scalings
(3) Sequences of Transformations
(4) Generating the Matrices
(5) Other Rotations and Scalings

6 Assignment

Other Rotations

- What if we want to rotate about a point $\left(x_{0}, y_{0}\right)$ that is not the origin?
- We can translate $\left(x_{0}, y_{0}\right)$ to the origin, rotate, then translate the origin back to $\left(x_{0}, y_{0}\right)$.

Other Rotations

Other Rotations

model $=$ translate $\left(-x _0,-y _0,0.0 f\right) \star m o d e l$;
model $=$ rotate (angle, 0.0f, 0.0f, 1.0f) *model;
model = translate(x_0, y_0, 0.0f)*model;

Other Rotations

```
model = translate(x_0, y_0, 0.0f)
    *rotate(angle, 0.0f, 0.0f, 1.0f)
    *translate(-x_0, -y_0, 0.0f) *model;
```


Other Scalings

- What if we want to scale about a fixed point $\left(x_{0}, y_{0}\right)$ that is not the origin?
- We can translate $\left(x_{0}, y_{0}\right)$ to the origin, scale, then translate the origin back to $\left(x_{0}, y_{0}\right)$.

Other Scalings

Other Scalings

```
model = translate(-x_0, -y_0, 0.0f)*model;
model = scale(s_x, s_y, s_z)*model;
model = translate(x_0, y_0, 0.0f)*model;
```


Other Scalings

$$
\begin{aligned}
& \text { model = translate(x_0, y_0, 0.0f) } \\
& \text { *scale(s_x, s_y, s_z) } \\
& \text { *translate (-x_0, -y_0, 0.0f) *model; }
\end{aligned}
$$

Outline

(1) The Model Coordinate System
(2) The Model Matrix

- Translations
- Rotations
- Scalings
(3) Sequences of Transformations
(4) Generating the Matrices
(5) Other Rotations and Scalings

6 Assignment

Assignment

Assignment

- Assignment 7.
- Read pp. 207-210, Homogeneous Coordinates.
- Read pp. 210-217, Linear Transformations and Matrices.

